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Interpretation of Small-Angle Scattering Functions of Dilute Solutions and Gases. 
A Representation of the Structures Related to a One-Particle-Scattering Function 
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Small-angle scattering gives a much poorer resolution of the structure than does diffraction by perfect 
crystals, i.e. the loss of information due to the random orientations of the scattering molecules is far 
greater than that known from the phase problem. For a quantitative comparison the scalar field func- 
tions in physical and reciprocal space are expressed as a series of spherical harmonics Y~m. From 
the rotational properties of spherical tensors it is deduced that the orientation of the partial structures 
described by the sum of the multipole components belonging to the same l has no influence on small 
angle scattering. There are no interference terms between these partial structures, i.e. the partial small 
angle scattering functions arising from the partial structures superimpose independently. Structures 
giving the same small angle scattering can be generated by displacing the coordinate system and rotating 
the partial structures in an arbitrary manner and sequence. 

The calculations are greatly facilitated by the properties of the 3-j and 6-j coefficients widely used 
in nuclear physics. The Hankel transformations of the multipole components are reduced to an algebraic 
problem by the introduction of Laguerre polynomials. 

Introduction 

The problem of uniqueness in crystallographic research 
has been discussed in detail by many authors (Hose- 
mann & Bagchi, 1962). Several techniques have been 
developed in order to solve the well known phase 
problem. No comparable investigations have been 
made in the field of X-ray small angle scattering. 

As small angle scattering arises from highly dis- 
ordered systems, it is likely that the experimentally 
obtainable information about the structure of indi- 
vidual scatterers is diminished drastically. Therefore 
a great variety of structures far exceeding the manifold 
structures due to the loss of phase will give the same 
small angle scattering. 

For the sake of simplicity monodisperse systems at 
infinite dilution are considered here, i.e. all irradiated 
molecules should have the same configuration and 
interparticular interference should be eliminated by ex- 
trapolation of the normalized scattering to infinite dilu- 
tion. These conditions reduce the scattering of the 
whole system to the scattering of one particle. 

The small angle scattering function 

As the small angle scattering function does not depend 
on the orientation of the scattering particle, it is con- 
venient to use a mathematical representation of the 
scatterer which includes the rotational properties of 
spherical tensors (Brink & Satchler, 1968), and for a 
bounded scalar field •(r) of the scatterer this is achieved 
by an expansion as a series of spherical harmonics: 

I 
Q(r)= Z Z Ozm(r)Yzm(O,~o) (1) 

I=0  m = - - I  

where 
(. 

rlqlm(r) =- Qlm(r) = Ytm(CO)e(r)dco. do)= sin 0d0d~0 Q 

The coefficients Ozm(r) are the multipole components of 
the field ~o(r). In reciprocal space the scattering ampli- 
tude A(s) of 0(r) can be described in the same way: 

oo 1 

A(s)= X; l~ Atm(s)Ytm(O) (2) 
1=0 m=--I 

where 
(. 

Slplm(S) =- AIm(S)= I Yt*m(Q)A(s)dQ ; 

s is the change of momentum of the incident photons 
induced by the scatterer in r. Assuming only elastic 
scattering s =  Isl equals (4n/2) sin 0; 0 is half the scat- 
tering angle. The transition from physical space to 
reciprocal space is achieved by a Fourier transforma- 
tion (Sneddon, 1956): 

A(s)=(2n)-3/21 0(r) exp (is.  r)d3r. (3) 

The corresponding multipole components are con- 
nected by Hankel transformations (Sneddon, 1956) 
(see Appendix A) 

Olm(r) = ~ 2  (-i) t  l Alm(s)jt(sr)s2ds , 

Alm(S)= V-2----n iz I Ozm(r)jz(sr)r2dr ; (4) 

jz(sr) are the spherical Bessel functions. 
The scattering intensity I(s) of Q(r) is given by the 

absolute square of A(s) (see Appendix A) 
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I(s)=A(s)A*(s) 
oo 1 

= ~ ~2 hm(s)Ylm(Q), (5) 
l=0 m=--I  

where 

Ilm(s) = Z ( -  1)m~-m ]/(2/1 + 1) (2/2 + 1) (2/+-i) 
ltlzmlm2 V 4n 

[lllfl~ ll 
x ~,000] (ml--m212 --mll ]Allml(s)A;2m2(s). 

[lll2l~ The Wigner coefficient \000] vanishes unless lx +12+l 
is an even number (Brink & Satchler, 1968; Massot, 
E1-Baz & Lafoucri~re, 1967). The phase problem can 
be characterized by the loss of the multipole compo- 
nents Ilm(s) with odd l. 

If all orientations of Q(r) are equally probable and 
interference between the particles is negligible, the 
small angle function of such a monodisperse system 
can l:e calculated by integrating I(s) with respect to 
all orientations of Q(r). It is convenient to introduce 
the Euler angles into I(s) as rotation parameters. A 
rotation of the field ¢(r,0,~0) specified by the Euler 
angles (o~,fl, y) is given by transforming Yz~(m) accord- 
ing to the following equation: 

l 
Y~m(~)= X~ -@~,m(Cqfl, ~') Ylm,(o~) (6) 

m'= --I 

where -q~.,,,(~,fl, ~) are the matrix elements of the rota- 
tion operator (Brink & Satchler, 1968). Integration 
over (e, fl,~,) yields the small angle scattering function 
J(s). 

1 1 oo l 
IF. ~, Alm(s)A~,,,(s). (7) J(s)= I/-~- I00(s)= 4n l=0 m=-t 

A similar equation has been derived by Debye (1915): 

J(s)=(2n)-3 g I 0(r)0(r') sin sl r - r ' l  d3rd3r, 
s l r - r ' l  

Introducing the multipole expansion of sin (slr-r ' l ) /  
(slr-r ' ])  equation (7) is obtained. Small angle scat- 
tering provides only the zero component of the multi- 
pole expansion of I(s). 

The small angle correlation function 

Every function considered in reciprocal space has its 
counterpart in physical space. The relation between 
Q(r) and A(s) is given by equation (3). 

The Fourier transform of the scattering intensity I(s) 
is known as the Patterson function Q(u). u is a vector 
connecting the points r and r' in physical space. Q(u) 
is the convolution square of Q(r). 

I ~°(r)Q(u +r)d3r " (8) Q(u)= 

According to a proposition of E1-Baz & Lafoucri~re 
(1965) Q(u+r) can be expanded as a series of spherical 

harmonics in the directions of u(= cou) and r (= co) 

Q(u+r)= ~ CullrlZg~(u,r)Y~aMI(cou)Y~*2M2(co ) (9) 
Illl2LL1L2 
raM1 M2 

where 

g~)(u,r)= L2 11 2 ( -  1)L qlm(~u2+r2+2urz) Pz(z)dz, 
--I 

[ L2Lll ~ [12L2L 
C= V4n ][llzL1L2dq+z2,z ~M2Mlm] \ 000 ] 

[llL1L~ 11112l ! 
x t, 000 ] [L2L1LJ' 

]= l / 2 l + 1 ;  

Pl(z) is the Legendre polynomial. 
The range of the summation indices is determined by 

the properties of the Wigner 3-j and 6-j coefficients 
defining C. Introducing equation (9) and (1) into equa- 
tion (8) the multipole expansion of the Patterson func- 
tion is obtained. 

oo L1 

Q(u)=/4 =0ZMI =Q~.]- M I ( u ) Z  YLx M~(COu) , (10) 

where 

S Q L 1 M I ( U ) =  ~2 C u l l  12 o(L) 2 
lll21LL2 r= o r 0L2M'2(F)olm(U, r)r d r .  

raM2 

On transition to dilute solution or gases all orienta- 
tions of the Patterson functions associated with the 
molecules become equally probable. Such an isotropic 
system is described by a function H(u) depending only 
on the absolute value of u. H(u) is obtained by integra- 
tion of Q(u) with respect to all orientations cou (see 
Appendix B). 

1 
H(u)= ~ I Q(u)dco 

1 
- l/4n Qoo(U) (11) 

oo I ( 9  l ioo 
= ~ ~.~ U l - L  ~2 rl+Lq~m(r) 

1=0 L=0 2 ¢2-L + 1 m=--I  dr=0 
1 

x S qzm( V u2 + r2 + 2urz) pL(z)dzr2dr " 
--1 

H(u) is the small angle correlation function or charac- 
teristic defined independently by Debye & Btiche 
(1949) and Porod (1951). H(u) is related to its counter- 
part in reciprocal space by a Hankel transformation: 

H ( u )  = n I s2J(s) sin su ds 
Sbl 

J(s)=(2n)-31 4nuZH(u) si-n-SU-su du. (12) 

Another important function closely connected with the 
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convotution square 

p (r) "~  "~" Q(u) 

A(s) ~k- 

Average 
• H ( u )  

/(s) "~  . . . . . . . . . . . . . . . . . . .  J(s )  

absolute square Average 

Fig. 1. Schematic diagram of the steps to be performed in the 
structure analysis. The dotted lines show ambiguous steps. 
TF = Fourier transformation ; T~ = Hankel transformation ; 
T-1 = inverse transformation. 

correlation function is the distance distribution D(u),  

D(u)  = 41ru2H (u) . (13) 

Fig. 1 shows the relation between these functions in 
physical and reciprocal space. 

Representation of  the structures o(r) associated with a 
small-angle function J(s)  

The manifold structures giving the same scattering 
function J(s)  can be divided into two classes which are 
specified by the summation indices l and m of  equa- 
tions (7) and (11). 

t z 

Po(r) P~ (r) 

(a) (b) 

z 

°'" "'°" °°° °"'"'°°°".°°. . i  j ~ ..f 

• o. ......... ° ......... °-.'" 

P2tr) 

l z 

. . .  .................. ... 

" ' . .  . . . . . . . . . . . . .  ..'" 

Pa(r) 

(c) (d) 
Fig. 2. Partial structures of the model. 
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(1) From the transformation properties of the Y~m 
in equation (6) it can be deduced that t h e / t h  partial 
scattering function 

1 

Jz(s)= N A~m(S)Alm(s) (14) 
m = - - I  

is conserved under rotation of the / th  partial structure: 
l 

Qt(r) = ~2 Qtm(r) Ylm(Og). (15) 
m ~ - - I  

Thus one class of structures giving the same J(s)  is 
generated by arbitrary independent rotations of the 
partial structures Qz(r). On rotation the scalar product 
is conserved" 

l 1 

y., Qtm(r)Q;m(r ) = F~ -~lm(r)~;m(r) . (16) 
m = - - 1  m = - - l  

The phases of the partial structures can be chosen in 
such a way that 0(r) has rotational symmetry with 
respect to the z axis. (0ira(r)=0 if m #0). 

(2) The analysis of the sum of the partial scattering 
functions Jds)  yields another family of solutions. 

1 co 1 

J ( s )=  4n ~2z=0Jt(s) = ~ ]~t=o[AZ°(s)]Z 

0 3  

_ 1 E s2Z[pzo(S)]2 . (17) 
4n t=0 

Different decompositions of J(s)  into Jz(s) can be 
achieved by displacing Q(r) according to equation (9). 
This operation affects neither I(s) nor J(s) .  Q(r) re- 
mains congruent under this operation, but the changed 
multipole components offer'a new starting point for 
the construction of other 0(r) by rotation of Qz(r). 

9O 
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1 2_ 5 
Fig. 3. Radial functions of the partial structures. 
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We shall assume that rotation of the partial struc- 
tures Qz(r) and displacement of Q(r) in an arbitrary 
manner and sequence do not change the small-angle 
scattering. 

Small angle scattering is most easily discussed in 
terms of an Aoo(S) or Ooo(r) 

1 A0Z0(s)= 1 I sinsr rZdr " (18) J(s )=Yo(s )= ~ 2~2 ~Ooo(r) sr 

There are as many possible spherically symmetric 
structures Q0(r) giving the same J(s) as there are roots 
of J(s). The corresponding formula in physical space is 

D(U)=U 2 qoo(r) qoo( u2+r2+2urz)  dzrzdr.  (19) 
r = 0  - - I  

The distance distribution D(u) of a homogenous 
sphere is proportional to the common volume of two 
spheres with centre of mass distance u. 

ials (Tricomi, 1955). I f  pzm(S) and qtm(r) are expanded 
as a series of Laguerre polynomials of the order -½, 

qzm(r) = Eq~l'm)[ exp (-- r2/2)]L~ - 1/2)(r2) 
n=O 

ptm(S)= E p(nt,m)[ exp (-sz/2)lL(n-U2)(s2) , 
n=O 

it can be shown that the vectors 

(20) 

q(t, m)= {q(ol.m), q~l,m), q~,,,,,), . } 

p(/,m) = {p(ot, m), p(ll, m), pf ,  m), . . .  } 

are related by a linear transformation 

(21) 

p(~, m) = (i)~H(Oq(l, m) 

q(t, m) = ( _  i)ZH(0p(Z, m) (22) 

Examples 

The calculation of the scattering function J(s) is greatly 
facilitated by the introduction of Laguerre polynom- 

ZOO 

L50t----- 

[  !ii' 
50' ~ .,, I 

. ,  A2o cs), \~}k.. ' 
Al, o(S) ~ !  \ %='~'::=::a--.. 

H(0 is a triangular matrix equalling its inverse. The 
properties of the matrix elements of r4cn --tj are discussed 
in Appendix C. Equation (22) represents the Hankel 
transformation of order l in an algebraic form. The 

i z 5 q 
5 

Fig.4. Multipole components of the scattering amplitude of the model. 
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advantage of this calculation technique will be de- 
monstra ted by the following example: 

Q(r) = Q0(r) +o1(r) + Qz(r) +Q3(r) 

with 

Q0(r) = [35.5L0(r 2) - 28.4Ll(r 2) + 22.8Lz(r2)] 

x [ exp ( -  rZ/2)] Yoo(CO) 

Q~(r)=[5"2Ll(rZ) - 2"06Lz(rZ)]r[ exp ( -  r2/2)] Ylo(CO) 

Qz(r) =[4"8Lo(rZ)]rZ[ exp ( -  r2/2)] Yzo(CO) 

Q3(r) = [-O'67L1(rZ)]r3[ exp ( -  rZ/2)] Y3o(O)) . 

Fig.2(a)-(d)  shows the partial  structures 0z(r) all hav- 
ing rotat ional  symmetry with respect to the z axis. The 
r-dependent functions Qz0(r) are given as full lines in 
Fig.3. The complete structure Q(r) is shown in Fig.6(a).* 
The expansion coefficients of the pzo(S) are connected 
with those of qzo(r) by the matrix H(t). In the case l =  0 
the t ransformat ion works as follows: 

* Fig.6(a)-(d) resembles rough resolutions of the structures 
of globular proteins. 

p~0O,] = - 1 1 -  28.4 / 
p~oo),/ 0 \ 22.8] 

pOO = 35.5 + 56.8 +45.6 = 137.9 
p O O =  2 8 . 4 + 4 5 . 6 =  74.4 
pOO = 22.8 = 22-8. 

Thus we obtain Aoo(S). The other Azo(S) can be calcu- 
lated in a similar way according to equation (22). 

Aoo(S) = exp ( - sZ/2) [137.9L0(s 2) + 74.5Ll(s 2) 
+ 22.8L2(s2)] 

A10(s) = is exp ( - s2 /2 )  [ -37.3Lo(s2)-13.4L1(s  z) 
- 2" 1 L2($2)] 

Azo(S) = - s 2 exp ( -  sZ/2)4.8Lo(s z) 

A 3o(S) = - is 3 exp ( - s2/2) [5.36Lo(s 2) + 0.67L1 (s2)]. 

The Alo(S) are shown in Fig.4 (full lines). The scat- 
tering function J(s) is the sum of the absolute squares 
of Azo(S). The factor 1/4re has been omitted. The partial 

2 

. . . ~  . .  

, ,.... ;%-. \ - . x . . . _ _ _  

O / - ~  3orS)  / II I 

-a / /  " - 3 ~ ( s )  II I : II 
. : II I"  

i i  
-2. i 

-5 

-q 

". ~x. "".. 
• • .  

• f ..'? \ X.\ / 

I I "\ 
II 

,~ z 5 g 
S 

Fig. 5. Partial scattering functions Jz(s) and the total scattering function of the model. 
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scat ter ing funct ions  Jz(s) (Fig. 5) a re :  

Jo(s) = [A00(s)] 2 = exp ( - s 2 )  [183"7 - 108"8s z + 11 "4s4] 2 

Jl(s) = [Alo(S)]z=s 2 exp ( - s  z) [ - 4 4 . 1  + 16.6sZ- s4] 2 

Jz(s)=[Azo(s)]Z=s 4 exp ( -  sZ)23 

J3(s) = [A30(s)] 2 = s 6 exp ( - s 2) [31.5 - 7.7s z + 0.45s4] 2 . 

The  total  scat ter ing funct ion  J(s) (Fig. 5) is 

J(s)~-Jo(s) + J2(s) + Jz(s) + J3(s) 

= exp ( - s 2) [33700 - 37490s 2 + 14533s 4 

- 2090s 6 -k- 89s 8 + 1.5s 1°] . (23) 

We have  seen tha t  ro t a t i on  of  some par t ia l  s t ructures  
oz(r) does no t  change  the  par t ia l  scat ter ing funct ions  
Jl(s). The genera t ion  of  new s t ructures  based  on this 
principle was  achieved in the  fol lowing w a y :  

( Q(n)(r) = Oo(r) +01 r,O + 6 

_]_Q2(r,O)+Q3 (r ,O_ nn)  6 ' n = 0 , 1 , 2 , 3 .  (24) 

The funct ions  Q(n)(r) (n = 0 , 1 , 2 ,  3) in the xz  plane  are 
shown in Fig.  6(a) - (d) .  The s t ructures  0(n)(r) with n = 
1,2, 3 have  no ro ta t iona l  symmet ry .  

n=1 

/ 

T z 
n=o 

(a) 

T Z 

\ 

(b) 

10 8 6 4 2 

n=2 T z 

( 

2 
/ 

n=3 T z 

Co) (d) 

Fig. 6. Different superpositions of the partial structures according to equation (24). 
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Another class of structures giving the same scattering 
function J(s) is obtained by different decompositions 
of J(s) into Jz(s). We interpreted the sums Jo(s)+JI(S) 
and J2(s)+.J3(s) in terms of ~0(r) and Q2(r) respectively: 

J ; ( s )  = So(S) + J , ( s )  , : ; ( s )  = Jz(s)  + S~(s) , 

P'oo(s)-Aoo(S) ~ ,  4 '  " = s ' p z o ( S ) - A ~ o ( S ) = V S ; ( s ) .  (25) 

A'oo(S ) and A'zo(S) are shown in Fig.4 (broken lines). 
P'oo(s) and P'zo(s) can be approximated fairly well by a 
finite series of Laguerre polynomials L21/Z(s2). The cor- 
responding Q00(r) and Q;0(r) (broken lines in Fig. 3) are 
calculated according to equation (22). Thus another 
structure Q'(r)=Q0(r)+Qz(r), shown in Fig.7, is ob- 
tained. Q'(r) has rotational symmetry with respect to 
the z axis. 

A model with spherical symmetry can be found by 
defining Jo(s)=Jo(s ) + J2(s). Aoo(S) (dotted line in Fig. 3) 
is the square root of Jo(s). Q00(r) (dotted lines in Fig. 2) 
is the Hankel transform of Aoo(S). Q"(r) is shown in 
Fig. 8. 

These are some typical structures belonging to the 
same small-angle function J(s) defined by equation (23). 

A P P E N D I X  
A. Expansions and other formulae 

o o  

exp (is .  r) =4re Z N i~j'z(sr)Y~m(g2)Yzm(~) 
l=Om=--I 

sin s l r - r ' l  ~ l 
=4re ~2 l~ j~(sr)jt(sr') Y~m((,o) Ylm(CO') . 

s l r - r ' l  l=0 m=--I 

jz(sr) are the spherical Bessel functions. The spherical 
harmonics are denoted by Yzm. co is a unit vector. 

Y ,*~(co) = ( - 1)m Ylm(r.o) 

11+12 

l= ,1~ -12  
ml+m2+m=O 

x 1 / ~ +  1)(2/2-~])(2/+1)4zc \000/[1112l] \mt-m2m/(ll l 2 l Iy;ra((.o) 

2n n 2n 

SSS 
,~=0 fl=0 ~,=0 

ll [-~l',n,(OC, fl, Y)]*N~z,m(a,fl, y)da sin fldfl@ 

87~ 2 : ( ~  ~ p t R _ _ _ 

mlm2umlm2°lll2 2ll + 1 " 

-@~,,n(e,fl, y) is the matrix element of the rotation 
operator. 

Further useful formulae are given in modem treat- 
ments of the theory of angular momentum (Brink & 
Satchler, 1968; Massot, EI-Baz & Lafoucri6re, 1967). 

B. The multipole expansion of the small-angle 
correlation function 

Integrating the Patterson function Q(u) with respect 
to the unit vector o~u only Q0o(U) contributes to H(u). 

1 
I Q(u)dcou = 

1 
H(u)= ~ .: ->-~-= Qoo(U). 

/ / 4 ~  

As L I = 0  and MI=0 the range of the summation 
indices in equation (10) is greatly reduced because of 
the albegraic properties of the 3-j coefficients. 

C ~  [ l l t l t ]  [12g2gx~ I l l  l, l~ [g 2 g 1 l'~ 
~ 0 0 0 ]  ~ 0 0 0 ]  [g2£1gJ ~MzMlm]" 

The triangular conditions of the 3-j coefficients give 

l/l-L1] <L<l l+L1  - + l l = L }  
fL2 -L l l<L<L2+L~  --~ L2=l because L I = 0 .  

As the sum ME+MI+m=O and M~=O, M2 equals 
- - m .  

I l l l 2 l  I The 6-j coefficient [L2LILJ provides no further tri- 

angular conditions. Replacing the Kronecker delta 
function in C [equation (9)] by the substitution 12 = 
l -  ll = l -  L, we obtain 

gt-Li[(2L+l)! (2q-L)+l)!] C= V4zr ~ (2l+1)! 1/2 

(LOL  [I-LZL  Z 0 q 
000 , 0 (-m0m, 

where 

l Z 

4 2 

P'(r) 

Fig.7. Interpretation of the scattering function in terms of 
00(r) and 02(r) according to equation (25). 
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With the explicit expressions of the 3-j and 6-j coef- 
ficients 

l 0 l~ 1)t_m[_ ~ 
- mOm ] = ( -  

( I - L I L ]  [[2(l-L)]! (2L)]] 1/2 
000] = " (2l+1)! . . . . . . .  

: . , - ,  

L! 

we have 

C -  I/4n (_l)L_m ( l )  
2 L + l  L " 

By introduction of C into equation (I0), Q00(u) is ob- 
tained. 

C. The matrix elements of n (/) 

As the Laguerre polynomials L(n=)(x) form a complete 
system of orthogonal functions with respect to the 
density function x ~ ( e x p - x )  in the interval (0, c~), 
plm(S) and qzm(r) can be approximated by a series of 
these polynomials (Tricomi, 1955). In plm(S) and qtm(r) 
only even powers of s and r respectively are encoun- 
tered. Choosing ~ = - ½  the L(~')(x 2) are proportional 
to the even Hermite polynomials H2n(x) 

oo 
qzm(r)= r, q~t,m)[ exp (-r2/2)]L~-l/Z)(rZ) 

n=O 

ptm(S)= ~ (/,m) p,, [exp (-sZ/2)]L~-'/Z)(s2). 
n=0 

(20) 

The coefficients q(n l,m) and p~t,m) are calculated by means 
of the orthogonality relation of the L~-~/Z)(r2). 

icx~ 3 r2)  l (  - I /2)(r2]  l ( -  I/2)[,.2~Ar -- __F(n + ~) .~ 
( ~ , - - -  J = n  ~" ) = m  ," j , . , , _  _ _  r f _ _ ~ , n m . ~ 2 6 j  exp 

r=0 

The choice of the Laguerre polynomials as expansion 
functions is motivated by their simple transformation 
properties. 

/ ~ - I  ~r=o rl[exp(-r2/2)]L(nt+l/2)(r2)jt(sr)r2dr 

= ( -  1)nsZ[ exp (-sZ/2)]L~t+x/Z)(s2). (27) 

E x p r e s s i n g  LCn-l/Z)(r 2) by linear combinations of 
L~/+ 1/2)(r2) we find 

eo l+ l  
qtm(r)= exp (--r2/2) 53 l ~ ( -  l~v(t+l~,,(l,m)r(t+l/2)(r2)(28a) 

* )  \ v  / ~ l n + v L " n  
n = O v = O  

co l+ l  
p tm(S )  = exp ( -  S2/2)  ~2 ~£ ( - -  l~v(t+ x~ r~(l,m)I(l+ll2)(e2~ ( ' )~!~ 

) kv )Fn+v'--'n k ° ) . k  ~ u u )  
n = 0 v = 0  

Transforming equation (28a) term by term according 
to equation (27) and equating coefficients we obtain 

1+ 1 1+  1 
( - -  1)V(tv+l~,,(/,m)--i t+2n ~2 ( - -  l~vrl+l~,~(t,m) (29) 

) F n + v - -  ) kv ) f f n + v "  
v=0  v=0  

From this system of implicit linear equations the 
matrix elements of H Ct) can be calculated• They obey 
a simple recursion formula. 

H~/+) 1,1+ 1 = - H,, j .  (30) 

We cite as an example H (2) 

1 - 6  18 - 3 8  
0 - 1  6 - 1 8  
0 0 1 - 6  
0 0 0 - 1  

H(2)  = 0 0 0 0 

0 0 0 0 

66 - 102 . 
38 - 6 6  . 
18 - 3 8  . 
6 - 1 8  
1 - 6 .  
0 - 1  . 1 

P"(r) 

F i g . 8 .  I n t e r p r e t a t i o n  o f  the  s c a t t e r i n g  f u n c t i o n  in t e r m s  o f  a 
m o d e l  w i t h  s p h e r i c a l  s y m m e t r y .  

All matrix elements of H(Z) can be deduced from the 
first row of the matrix, Table 1 shows the first matrix 
elements H(o~ ) of H(0. 

Table 1. The elements of thefirst row H(o~ ) of H (t) 
l j 0 1 2 3 4 5 

0 1 - 2 2 - 2  2 - 2  
1 1 - 4  8 - 12 16 - 2 0  
2 1 - 6 18 - 38 66 - 102 
3 1 - 8 32 - 8 8  192 - 3 6 0  
4 1 - 10 50 - 170 4 5 0  - 1002 
5 1 - 1 2  72 - 292  912  - 2 3 6 4  

The analysis of the sequence of the u(t) by means 1,  0j 
of higher differences leads to the following formulae" 

1 
H(0//) = ( - 1)J Z (~,)BI~. (31) 

k = 0  
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The properties of the Bag are 

Bj~=O,k>j ;  B~j=2J; B ~ 0 = 2 , j # 0 ;  

jon 

8j,j_,~= z (Jr") ~: (u)en,, t 

t=0 n=0 

Table 2 shows some Bje. 

(32) 

] k  0 
0 1 
1 2 2 
2 2 6 4 
3 2 10 16 
4 2 14 36 
5 2 18 64 
6 2 22 100 

Table 2. The elements Bjk 

1 2 3 4 

8 
40 16 

112 96 32 
240 320 224 

5 6 

64 . 

Equation (32) permits a recursive calculation of 
further Big. 

The author is very grateful to Professor G. V. Schulz 
for his kind interest in the present work. Special thanks 
are due to Professor P. Beckmann and Dr R. G. Kirste 
for helpful discussions. 
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The Structure of Short-Range Ordered Alloys. I. Clustering of Ordered Cells* 
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A statistical theory for the X-ray diffuse scattering from disordered binary alloys is developed. It con- 
veys the probability of finding ordered cells as a function of the distance from a given cell. These prob- 
abilities are related to the Warren short-range-order parameters. It is also shown that if part of the 
volume of the crystal is completely disordered, then its size can be calculated from the usual diffuse- 
scattering measurements. Comparison with experiment shows clustering of ordered cells in disordered 
CuAu. For alloys which obey the Ornstein-Zernike pair correlation function just above To, such as 
B-brass, there is a clustering of ordered cells, but not an anti-phase domain structure. 

Introduction 

Binary alloys which undergo an order-disorder transi- 
tion exhibit short-range order above the transition 
temperature. The actual substructures of such alloys 
influence many of their physical properties. Conse- 
quently the exact atomic correlation of short-range- 
ordered alloys has been a subject for many investiga- 
tions (Gehlen & Cohen, 1965), but the situation is far 
from being clear. 

X-ray diffuse scattering studies from short-range- 
ordered alloys convey the probabilities for the ex- 
istence of a given type of atom in each shell of neigh- 

* This work represents part of the D.Sc. dissertation of 
M. Greenholz. 

bours (Warren & Averbach, 1953). These are statistical 
results and may be compatible with different models of 
solid solution, e.g. with a liquid-like character of the 
distribution of each kind of neighbour or with a model 
of nucleation of the long-range-ordered phase, i.e. on 
the assumption that the alloy contains ordered nuclei 
in an otherwise disordered matrix. 

On the other hand, in the parallel case of clustering in 
pre-precipitation alloys, it has been known for some 
time that these alloys contain zones of one kind of 
atom, such as the well-known Guinier-Preston zones 
in AI-Zn, etc. (Guinier, 1959). 

We develop here a new diffraction theory for the 
diffuse scattering of X-rays from short-range-ordered 
alloys. This theory converts the treatment of  short- 
range order between atoms to a treatment of 'local 


